

GENERALIZED CROSS-COUPLED FILTERS USING EVANESCENT MODE COUPLING ELEMENTS

Richard V. Snyder

RS Microwave Company, Inc.
22 Park Place, Butler, NJ 07405

PHONE: 201-492-1207 ~~■~~ FAX: 201-492-2471 ~~■~~ E-MAIL: r.snyder@ieee.org

ABSTRACT

Generalized cross-coupled filters require implementation of both positive and negative cross coupled elements. A positive element frequently uses inductive coupling, while a negative coupling element uses capacitive coupling. While the required negative couplings are readily achieved in most cases using inductive irises, the synthesized values for capacitive coupling frequently require larger coupling values than can be achieved with a simple iris. Traditional methods for realizing capacitive couplings have included the use of capacitive probes, which are difficult to adjust in practice. Further, the negative couplings can be large enough to again cause problems with simple inductive irises. In this paper, we present the use of resonated evanescent mode sections to realize both positive and negative couplings by employing the phase shift and impedance characteristics of the bandpass element represented by a short resonated section of evanescent mode waveguide. The structure is quite practical and flexible in packaging. Examples will include use of up to four cross couplings, two negative and two positive.

INTRODUCTION

Implementation of generalized cross-coupled filters requires the use of both positive impedance (inductive) and negative impedance (capacitive) couplings. The former are used for placing real-axis transmission zeros for delay equalization while the latter are used for placing real-frequency zeros, used for additional selectivity. Inductive and capacitive irises are common in the literature and, in many cases, can be used for the aforementioned positive and negative couplings. The iris couplings usually take the form of a simple opening between two segments of the filter. One example is a direct opening between the input portion of the filter and the output. This opening in essence provides a shorter path between the 2 terminating ports than is represented by the full traverse of all the filter elements. Some energy "leaks" from the input directly to the output. If the "leaking" energy is coupled in an inductive manner, the coupling is such as to reduce the net effect on attenuation of the remaining filter elements and simultaneously to reduce the total group delay variation due to the interference generated at the output termination between the leaking energy and the remainder which fully

traverses the filter. In other cases, the "leaky" (or cross) couplings will be placed well within the filter, between any pair of resonant sections. In some cases, however, the values of computed coupling are such as to make impractical a simple opening between two parallel portions of the filter. The use of resonated evanescent mode sections allows implementation of both positive and negative couplings by employing the phase shift and impedance characteristics of the bandpass element represented by a short resonated section of evanescent mode waveguide.

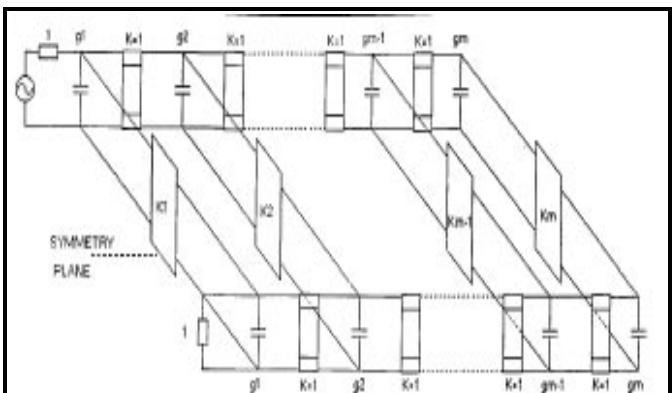
METHOD

In **Fig. 1**, we illustrate a generalized lowpass cross-coupled filter prototype using an impedance inverter formulation. The cross couplings may be inductive or capacitive, depending on the synthesis and design requirements. Inductive-pi and tee equivalent circuit representations of a section of evanescent guide are well known [5], [6], [7], [8]. Conversion of the evanescent section into a single or multiple pole bandpass filter has again been well documented (Ref.[9] and U.S. Patent 5,220,300) and consists of placing resonating capacitive section transverse to the direction of propagation within the evanescent waveguide. Inductive (and some capacitive) coupling irises can be thought of as very short sections of below cutoff waveguide. Indeed, when the iris becomes large and thus approaches dominant mode propagation rather than decay, the parasitic effects become dominant and it no longer acts as a selective coupling. Some capacitive coupling designs have used a probe which provides an electric field coupling between the two parallel portions of the filter. Such probes perturb the field within the sections to which they are coupled, with the perturbations acting to modify the electromagnetic characteristics of the particular filter sections, which are normally computed in an idealized electromagnetic environment, in isolation. The mode and concomitant dimensions are chosen, with couplings assumed right at the boundaries...clearly not the case when a probe actually enters the resonant area. Of course, electromagnetic simulation can be used to correct for this perturbation effect, but no simulation will enable easy adjustment of

physically isolated and mechanically unstable capacitive probes.

We propose the use of resonated sections of evanescent guide to provide the couplings between the two cross-coupled portions of the filter. The coupling inverters shown in **Fig. 1** can be represented either as a tee or a pi. The inverter must provide a coupling magnitude and phase shift as required by the synthesis. In most instances, we will use a single capacitive element to resonate a shunt element, although in some cases the required inverter bandwidth is such as to require the use of two capacitive elements making the coupling essentially a two pole bandpass filter. **Fig. 2** presents the even and odd mode decompositions of the pi model. The only difference between the even and odd halves are the signs of constant reactances remaining. Thus, knowledge of either even or odd half circuit element values is sufficient for determining the response of the entire filter. **Fig. 3** portrays the even and odd half equivalent circuits for a cross-coupled filter. A software package called **FILPRO** has been developed which includes the necessary transformations and response calculations; a pair of presentations describing the capabilities of **FILPRO** will be presented during a workshop at this Symposium.

The principle proposed herein: Energy couples into a bandpass section based upon the match of that section to its source and load, and then passes through the bandpass section undergoing some phase shift, with both the coupling into and phase shift through depending on the resonant frequency of the bandpass section. Proper choice of the match and resonant frequency enable achievement of a very large range of positive and negative couplings which also offer the benefit of being quite selective and thus providing the desired coupling only over a desired band of frequencies. **Fig. 4** is a schematic representation of a single section of resonated evanescent mode guide used to provide coupling between the two adjacent paths in the bandpass filter. The range of achievable couplings depends upon the lengths of evanescent waveguide and the value of the capacitor used to resonate the center element of the tee representation. In essence, the cross coupling is a single-pole evanescent mode bandpass filter, whose transfer function provides coupling between the two adjacent sections of the main bandpass filter. The transformers shown in **Fig. 4** represent the effect of the junction between the small evanescent waveguide cross coupling “iris” and the cross-section of the main line of the filter. **Fig. 5** provides physical detail on the implementation of the schematic of **Fig. 4**. Additional phase shift and range of coupling are achievable if a two section evanescent


bandpass section is used for cross-coupling. This is illustrated in **Fig. 6**. When real-frequency zeros are located very close to the passband, the **Fig. 6** configuration frequently is required. **FILPRO** enables calculation of both implementations illustrated in **Figs. 5 and 6**. Simple ABCD or scattering calculations provide the coupling to the main line.

EXAMPLES

1200 MHz center frequency, 2 positive and 2 negative couplings. Photos are shown in **Fig. 7 and 8**. **Table 1** presents the requirements, **Figs 9 and 10** the preliminary results of the prototype. Final results and other examples will be shown during the talk.

CONCLUSIONS

Use of resonant sections of evanescent waveguide have been shown to provide both negative and positive couplings suitable for imbedment within cross coupled filters. The required construction technique has been well-developed during the maturation of the evanescent filter design methodology over the years, and can yield sturdy, temperature-compensated and highly reliable filters. A sophisticated software package [11] has been developed which allows the design of many cross coupled filters without much effort. It is planned to incorporate optimization and E-M analysis capability into this package, which should further enhance the application of the method described in this paper.

FIGURE 1
A symmetric cross-coupled lowpass prototype filter circuit
with inverters

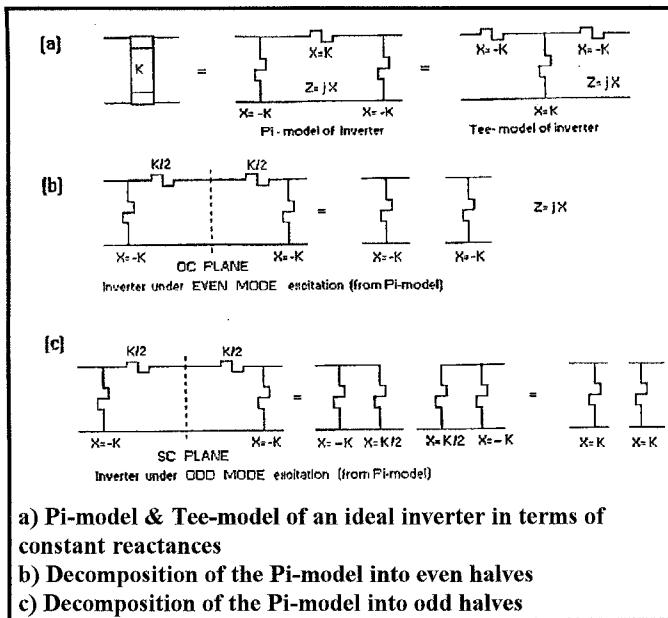


FIGURE 2

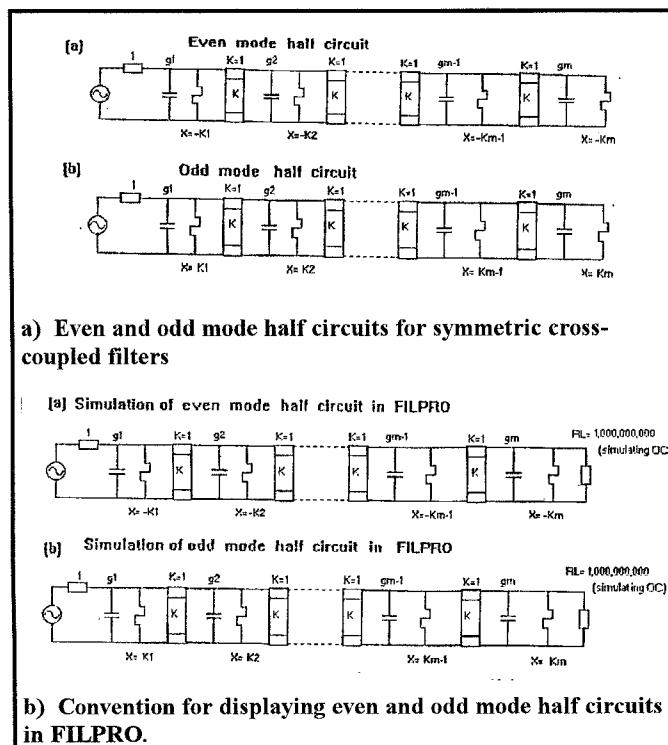
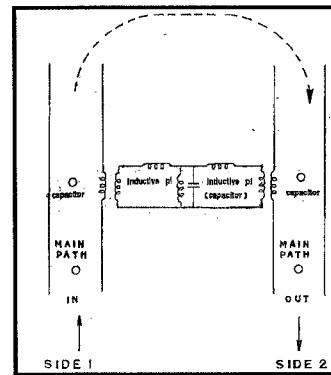



FIGURE 3

FIGURE 4 Resonated inductive pi representation of two lengths of evanescent waveguide with capacitor centered between the two sections. The end inductors are coupled to the main lines of the filter. The single pole of resonance can provide a wide range of phase shifts, while the end inductive sections provide the requisite coupling magnitudes.

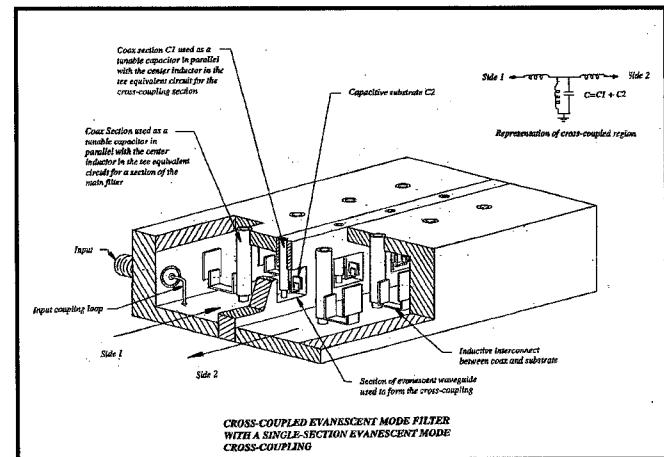


FIGURE 5

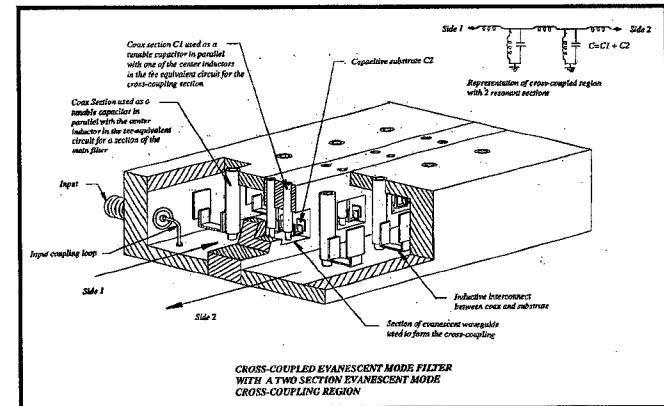
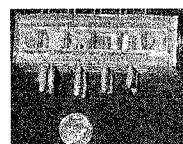
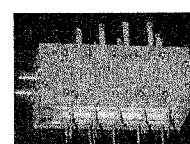




FIGURE 6

Open Filter

Closed Filter

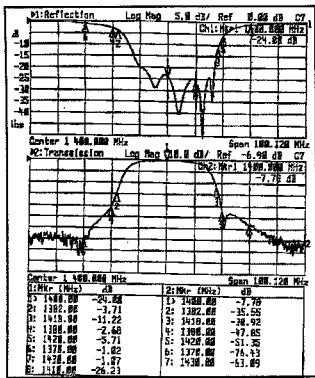


FIGURE 9

Prototype Preliminary Results

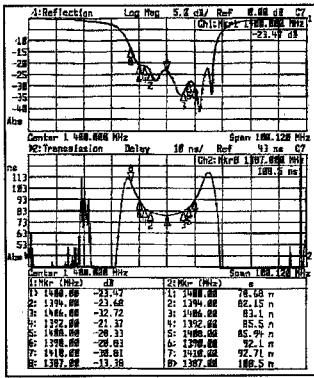


FIGURE 10

CROSS COUPLE FILTER				
PARAMETER	UNIT	MIN	NOM	MAX
FREQUENCY	MHz		1200	
BANDWIDTH	MHz		26	
INSERTION LOSS	dB			6
OUT OF BAND REJECTION				
CF+/- 15MHz	dBc	-1.5		
CF+/- 18MHz	dBc	-20		
CF+/- 20MHz	dBc	-40		
CF+/- 30MHz	dBc	-50		
GAIN VARIATION				
CF+/- 6MHz	dBc p-p			0.3
CF+/- 8MHz	dBc p-p			0.5
CF+/- 10MHz	dBc p-p			0.9
CF+/- 12MHz	dBc p-p			1.8
CF+/- 13MHz	dBc p-p			3
GAIN SLOPE				
CF+/- 6MHz	dB/MHz			0.05
CF+/- 8MHz	dB/MHz			0.1
CF+/- 10MHz	dB/MHz			0.27
CF+/- 12MHz	dB/MHz			0.55
CF+/- 13MHz	dB/MHz			1.2
GROUP DELAY				
CF+/- 6MHz	ns			2
CF+/- 8MHz	ns			4
CF+/- 10MHz	ns			12
CF+/- 12MHz	ns			36
CF+/- 13MHz	ns			60
GROUP DELAY RIPPLE		ns p-p		2.5
Over and 10 MHz within Passband				

TABLE 1
Filter Requirements

Positive Couplings = 2 Negative Couplings = 2

REFERENCES

1. J.D. Rhodes, "A Lowpass Prototype Network for Microwave Linear Phase Filters", IEEE Trans. MTT-S, MTT-18, June 1970.
2. A. E. Atia and A. E. Williams, "Nonminimum phase, Optimum Amplitude Bandpass Waveguide Filters", IEEE Trans. MTT-S, MTT-22, April 1974.
3. R. Levy, "Filters with Single Transmission Zeros at Real or Imaginary Frequencies", IEEE Trans. MTT-S, MTT-24, April 1976.
4. R. J. Cameron and J. D. Rhodes, "Asymmetric Realizations for Dual-Mode Bandpass Filters", IEEE Trans. MTT-S, MTT-29, Jan. 1981.
5. J. D. Rhodes and I. H. Zabalawi, "Synthesis of symmetrical dual mode in line prototype networks", Int. J. Circuit Theory and Applications, Vol. 8, 1980.
6. R. V. Snyder, "New Application of Evanescent Mode Waveguide for Filter Design", IEEE Trans. On Microwave Theory and Techniques, December, 1977.
7. R. V. Snyder, "Embedded-Resonator Filters", Proceedings of the ESA-ESTEC Conference on Filter CAD, ESA, The Netherlands, November 6-8, 1995.
8. G. Craven and R. Skedd, Evanescent Mode Microwave Components, MA: Artech House, 1987.
9. R. V. Snyder, "Narrow Band Resonator type filters with Wide Stopbands", IEEE Trans. MTT-S, MTT-42, July, 1994 and U.S. Patent 5,220,300.
10. N. Yildirim, FILPRO Manual, METU, Ankara, Turkey, November 1996.