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ABSTRACT traverses the filter. In other cases, the “leaky” (or cross)
Generalized cross-coupled filters require implementation gfouplings will be placed well within the filter, between any
both positiveand negative cross coupled elements. Apair of resonant sections. In some cases, however, the
positive element frequently uses inductive coupling, while avalues of computed coupling are such as to make
negative coupling element uses capacitive coupling. Whil@mpractical a simple opening between two parallel portions
the required negative couplings are readilyhieved in  of the filter. The use of resonated evanescent mode sections
most casessing inductive irises, the synthesiagdues for 4 16\s implementation of both positive and negative
capacitive coupling frequently requirtarger coupling couplings by employing the phase shift and impedance

valuesthan can bachieved with a simplgis. Traditional h teristi f the band | i ted b
methods forrealizing capacitive couplings have included characteristics of the bandpass element represented by a

the use of capacitive probes, whiehedifficult to adjust in short resonated section of evanescent mode waveguide.
practice. Further, the negative couplings can be large METHOD

enough to agaircause problems with simple inductive

irises. In this paper, we present thee of resonated In Fig. 1, we illustrate a generalized lowpass cross-coupled
evanescent mode sections to realize both positive arflter prototype using an impedance inverter formulation.
negative couplings by employinthe phase shift and Tpe cross couplings may be inductive or capacitive,

impedance  characteristics of the bandpass elemeaﬁ% ending on the synthesis and design requirements.
represented by a short resonated section of evanescent mQ §uctive-pi and tee equivalent circuit representations of a

waveguide. The structure is quite practicahdflexible in : .
packaging. Examples will include use of up to forpss ~ SEction of evanescent guide are well known [5], [6], [7],
couplings two negative and two positive [8]. Conversion of the evanesecent section into a single or

multiple pole bandpass filter has again been well docu-
INTRODUCTION mented (Ref.[9] and U.S. Patent 5,220,300) and consists of
Implementation of generalized cross-coupled filters placing resonating capacitive section transverse to the
requires the use of both positive impedance (inductive) andjirection of propagation within the evanescent waveguide.
negative impedance (capacitive) couplings. The former argnductive (and some capacitive) coupling irises can be
used for placing real-axis transmission zeros for delay  thought of as very short sections of below cutoff waveguide.
equalization while the latter are used for placing real- Indeed, when the iris becomes large and thus approaches
frequency zeros, used for additional selectivity. Inductive dominant mode propagation rather than decay, the parasitic
and capacitive irises are common in the literature and, in effects become dominant and it no longer acts as a selective
many cases, can be used for the aforementioned positive coupling. Some capacitive coupling designs have used a
and negative couplings. The iris couplings usually take theyrobe which provides an electric field coupling between the
form of a simple opening between two segments of the  two parallel portions of the filter. Such probes perturb the
filter. One example is a direct opening between the input field within the sections to which they are coupled, with the

portion of the filter and the output. This opening in perturbations acting to modify the electromagnetic
essence provides a shorter path betwee@ teeminating characteristics of the particular filter sections, which are

ports than is represented by the full traverse of all the filternormally computed in an idealized electromagnetic
elements. Some energy “leaks” from the input directly to - environment, in isolation. The mode and concomitant

the output. If the “leaking” energy is coupled in an dimensions are chosen, with couplings assumed right at the
inductive manner, the coupling is such as to reduce the neoundaries...clearly not the case when a probe actually
effect on attenuation of the remaining filter elements and enters the resonant area. Of course, electromagnetic
simultaneously to reduce the total group delay variation dugimulation can be used to correct for this perturbation

to the interference generated at the output termination  effect, but no simulation will enable easy adjustment of
between the leaking energy and the remainder which fully
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physically isolated and mechanically unstable capacitive bandpass section is used for cross-coupling. This is
probes. illustrated inFig. 6. When real-frequency zeros are located
very close to the passband, tig. 6 configuration
We propose the use of resonated sections of evanescent frequently is requiredFILPRO enables calculation of both
guide to provide the couplings between the two cross- implementations illustrated iRigs. 5 and 6 Simple
coupled portions of the filter. The coupling inverters ABCD or scattering calculations provide the coupling to
shown inFig. 1 can be represented either as a tee or a pi. the main line.
The inverter must provide a coupling magnitude and phase EXAMPLES
shift as required by the synthesis. In most instances, we w
use a single capacitive element to resonate a shunt eleme
although in some cases the required inverter bandwidth is
such as to require the use of two capacitive elements
making the coupling essentially a two pole bandpass filter.
Fig. 2 presents the even and odd mode decompositions of
the pi model. The only difference between the even and CONCLUSIONS
odd halves are the signs of constant reactances remaining
Thus, knowledge of either even or odd half circuit element
values is sufficient for determining the response of the
entire filter. Fig. 3 portrays the even and odd half
equivalent circuits for a cross-coupled filter. A software
package calle&#ILPRO has been developed which
includes the necessary transformations and response
calculations; a pair of presentations describing the
capabilities ofFILPRO will be presented during a
workshop at this Symposium.

'#goo MHz center frequency, 2 positive and 2 negative
cduplings. Photos are shownFiy. 7and 8 Table 1
presents the requiremenigs 9 and 10the preliminary
results of the prototype. Final results and other examples
will be shown during the talk.

Use of resonant sections of evanescent waveguide have
been shown to provide both negative and positive couplings
suitable for imbedment within cross coupled filters. The
required construction technique has been well-developed
during the maturation of the evanescent filter design
methodology over the years, and can yield sturdy,
temperature-compensated and highly reliable filters. A
sophisticated software package [11] has been developed
which allows the design of many cross coupled filters
without much effort. It is planned to incorporate
optimization and E-M analysis capability into this package,

The principle proposed herein: Energy couples into a : 2
bandpass section based upon the match of that section to }évsh'Ch should further enhance the application of the method

source and load, and then passes through the bandpass escribed in this paper.
section undergoing some phase shift, with both the
coupling into and phase shift through depending on the
resonant frequency of the bandpass section. Proper choi¢
of the match and resonant frequency enable achievement
a very large range of positive and negative couplings whigt
also offer the benefit of being quite selective and thus
providing the desired coupling only over a desired band of
frequencies.Fig. 4is a schematic representation of a singlg
section of resonated evanescent mode guide used to prowy
coupling between the two adjacent paths in the bandpass
filter. The range of achievable couplings depends upon tf
lengths of evanescent waveguide and the value of the
capacitor used to resonate the center element of the tee
representation. In essence, the cross coupling is a singlé
pole evanescent mode bandpass filter, whose transfer
function provides coupling between the two adjacent FIGURE 1

sections of the main bandpass filter. The transformers A symmetric cross-coupled lowpass prototype filter circuit
shown inFig. 4 represent the effect of the junction betweer with inverters

the small evanescent waveguide cross coupling “iris” and

the cross-section of the main line of the filt&ig. 5

provides physical detail on the implementation of the

schematic ofig. 4. Additional phase shift and range of

coupling are achievable if a two section evanescent
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b) Convention for displaying even and odd mode half circuits
in FILPRO.
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CF+/- SMHz dB/MHz 0.1
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GROUP DELAY
CF+/- 6MHz ns
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CF+/- 12MHz ns 36
CF+/- 13MHz ns 60
GROUP DELAY RIPPLE [[nspp | [T |]2s

Over and 10 MHz within Passband

LI ]

TABLE 1

Filter Requirements
Positive Couplings =2 Negative Couplings = 2
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